
ASPA: RPKI-based AS_PATH verification

Ben Maddison <u>benm@workonline.africa</u>

Background: BGP route leaks

" A route leak is the propagation of routing announcement(s) beyond their intended scope - RFC7908

"

Who gets to decide on "intended scope"?

- Prefix owner?
- Downstream AS?
- Upstream AS?
- Routing police?

Who gets to decide on "intended scope"? (cont.)

- Intuitively, a route has been leaked when no-one is paying the transit AS.
- Formalised in the "valley-free" model

Who gets to decide on "intended scope"? (cont..)

An observed AS_PATH is in agreement with intended routing policy when for each transit AS, either:

- the transit AS is authorised by the *sending* AS to announce the path upstream to non-customers; or
- the transit AS is authorised by the *receiving* AS to announce to it all the paths received from non-customers

ASPA RPKI signed object

- Authorisation by a *Customer AS (CAS)* of a *Set of Provider ASes (SPAS)*
- Based on <u>RFC6488</u> object template
- CAS holder signs
- RP validates, aggregates, and sends to BGP speaker via RTR protocol

Object eContent

High level structure:

```
ASProviderAttestation ::= SEQUENCE {
    version [0] INTEGER DEFAULT 0,
    customerASID ASID,
    providers ProviderASSet }
ProviderASSet ::= SEQUENCE (SIZE(1..MAX)) OF ProviderAS
ProviderAS ::= SEQUENCE {
    providerASID ASID,
    afiLimit AddressFamilyIdentifier OPTIONAL }
```

Object eContent - version

Familiar version construct. Nothing to see here.

version

[0] INTEGER DEFAULT 0,

Object eContent - customerASID

AS number of the network providing and signing the authorisation.

Encoded as 32-bit integer.

customerASID ASID,

Object eContent - ProviderASSet

- Non-empty set of authorised provider ASes
- No distinction between up/downstream authorisation
- ASØ used to signal "transit-free"
- afiLimit used to limit authorisation to a single address family

```
ProviderASSet ::= SEQUENCE (SIZE(1..MAX)) OF ProviderAS
```

```
ProviderAS ::= SEQUENCE {
    providerASID ASID,
    afiLimit AddressFamilyIdentifier OPTIONAL }
```

ASPA object processing

- ASPA objects are produced by RPKI CAs <u>draft-ietf-sidrops-aspa-profile</u>
- RPKI-RTR is (usually) how the data gets to the router <u>draft-ietf-sidrops-8210bis</u>
- ASPA verification algorithm operates on the data contained in the RTR payload (aka **VAP**).

draft-ietf-sidrops-aspa-verification

BGP Route Processing

Each BGP path gets an AS_PATH verification state:

- Valid: all transit ASes appearing in the AS_PATH were verified by ASPA data
- Invalid: at least one transit AS in the AS_PATH is acting in contravention of its neighbors' ASPA authorisations
- **Unknown**: insufficient ASPA data exists to arrive at either Valid or Invalid

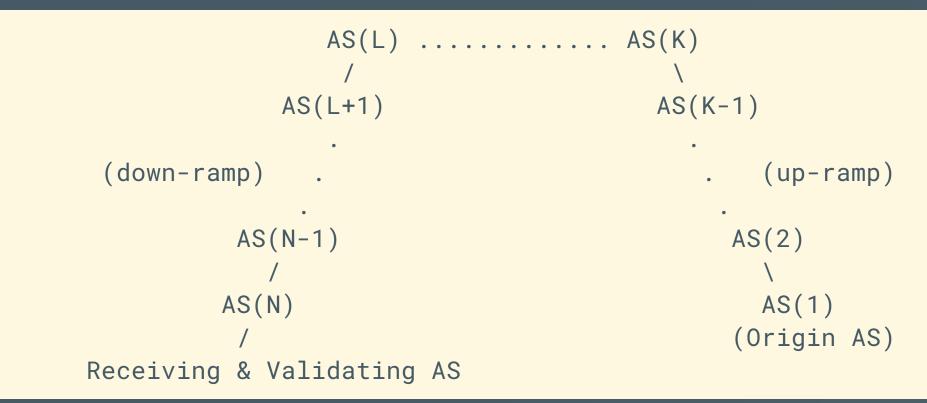
BGP Route Processing (cont.)

draft-ietf-sidrops-aspa-verification-12 defines two algorithms:

1. Algorithm for Upstream Paths

For paths received from non-transits (customers, peers, etc). The entire AS_PATH is expected to contain only *customer-toprovider* adjacencies

BGP Route Processing (cont..)


draft-ietf-sidrops-aspa-verification-12 defines two algorithms:

2. Algorithm for Downstream PathsFor paths received from transits.The AS_PATH is expected to contain:

- An **up-ramp** of *customer-to-provider* adjacencies
- A **down-ramp** of *provider-to-customer* adjacencies

BGP Route Processing (cont...)

Up-ramp / down-ramp visualisation

Alternatives?

- IRR data does not contain the necessary policy information (no transit-via in autnum)
- <u>Peerlock</u> has similar semantics, however:
 - No crypto (in general)
 - Highly manual
 - Requires bug-free AS_PATH regex ;-)

• BGPsec solves a different problem - truthfulness of AS_PATH, not verification of routing policy

Benefits

- Minimal topology information required: no public assertions about who your peers or customers are
- Far-end verification: leaks are detectable several hops away from the leak
- Orthogonal to other RPKI use cases: semantics of other objects don't change
- Correct granularity: policy is described at the AS level, no sessions or prefixes

Current Status - IETF

- <u>draft-ietf-sidrops-aspa-profile</u> and <u>draft-ietf-sidrops-aspa-</u> <u>verification</u> currently in WGLC.
 - Object profile is ~done.
 - Verification draft needs a revision
- draft-ietf-sidrops-8210bis awaiting RFC publication

Please review!

Current Status - Implementations

- CA implementations Krill
- RP implementations rpki-client, Routinator, RPSTIR2, StayRTR
- Tooling and testing rpkimancer, various others
- BGP speaker implementations openbgpd, NIST BGP-SRx

Still missing commercial NOS vendors

